

Measurement

\qquad
Measurement is defined as a set of rules for \qquad assigning numbers to represent objects, traits, attributes, or behaviors \qquad
A variable is something that varies (eye color), \qquad a constant does not (pi)

Variables can be discrete (finite range - sex, race) or continuous (infinite range - time, distance)

Scales of Measurement

Nominal Scales are qualitative system for \qquad categorizing objects or people

Gender: Female =1, Male = 2; Eye Color: Brown \qquad
$=1$, Blue $=2$, Green $=3$.

Ordinal Scales allow you to rank people or objects according to the quantity of a \qquad characteristic

Class Rank: 1 = Valedictorian, 2 = Salutatorian, 3 = 3rd Rank, etc.

Scales of Measurement

Interval Scales allow ranking on a scale with \qquad equal units

IQs, GRE scores \qquad
Ratio Scales have the properties of interval \qquad scales with a true zero point

Height in inches, weight in pounds

Why "Scale" matters

\qquad

There is a hierarchy among the scales \qquad
\qquad (provide the least information) and ratio scales are the most sophisticated (provide the \qquad most information)

Interval and ratio level data allow the use of the more powerful parametric statistical procedures

Types of Statistics

Statistics is the branch of mathematics \qquad dedicated to organizing, depicting, summarizing, analyzing, and dealing with \qquad numerical data

Can be descriptive or inferential
\qquad
\qquad
\qquad
\qquad

Distributions

Frequency distributions offer a great way to visually inspect data before running inferential statistics

For example:

Student	Homework Scores
${ }_{\substack{\text { Cindy } \\ \text { Tommy }}}$	8
Paula	9
Steven	${ }_{5}$
Angela	6
${ }_{\substack{\text { Robert } \\ \text { Kim }}}^{\text {and }}$	${ }_{10}$
Charles	
${ }_{\text {Jumie }}^{\substack{\text { Julie } \\ \text { Shaxn }}}$	${ }_{9}$
Karen	8
Paul	4
Teres	5
Tammy	7
Shelly	8
$\substack{\text { Carol } \\ \text { Johny }}$	${ }_{7}^{8}$
Kevin	8
Randy	5
$\text { Mean }=7.3$ $\begin{aligned} & \text { Median }= \\ & \text { Mode }=8 \end{aligned}$	

Table 2.3: Ungrouped Frequency Distribution		
Score	Frequency	
10	1	
9	4	Ungrouped FDs
8	5	give information
7	4	on all scores in a
6	3	set of data
5	2	
4	1	
Note: This reflects the same distribution of scores depicted in Table 2.2.		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]| |
| :--- |
| Graphs can be a |
| visually interesting and |
| meaningful way to |
| convey information |
| about a set of scores |
| Let's see it in action! |

\qquad
\qquad
visually interesting and
meaningful way to convey information
about a set of scores

Measures of Central Tendency

\qquad

Mean

\qquad
The arithmetic average
Median
Divides a distribution arranged in an order of magnitude in half

Mode
Most frequently occurring value in a distribution

Measures of Variability
Range
Distance between extreme points in a distribution
Variance
Sum of the deviations between each value in a
distribution and the mean of the distribution, or
$\Sigma(\mathrm{X}-M)^{2}$, divided by N

\qquad
\qquad
\qquad
\qquad distribution and the mean of the distribution, or
\qquad
\qquad
Square root of the variance, a gauge of variability
\qquad

Shapes of Distributions

\qquad

Normal Distribution (bell curve) \qquad
Special symmetric distribution that is unimodal with mode $=$ median $=$ mean

Skewed Distributions

Kurtosis

Leptokurtic (less dispersion)
Platykurtic (greater dispersion)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation Coefficients

A correlation coefficient is a mathematical \qquad
\qquad measure of the relationship between two variables
\qquad
The correlation coefficient was developed by Karl Pearson and is designated by the letter r

Remember that variables tend to regress to the mean

Correlation (r)

Correlations range from -1.0 to +1.0 \qquad
Correlations differ on two parameters:
Sign - can be positive or negative. Indicates the pattern of the relationship

Size - a correlation of 0.0 indicates the absence of a relationship; the closer the correlation gets to 1.0, the stronger the relationship; a 1.0 indicates a perfect relationship

Scatterplots

Graph depicting the relationship between two variables (X \& Y)

Each mark in the scatterplot actually represents two scores, an individual's scores on the X and the Y variable

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Correlations

Pearson Product-Moment Correlation Both variables continuous and on an Interval or Ratio scale

Spearman Rank-Difference Correlation
Both variables on an Ordinal scale
Point-Biserial Correlation
One variable continuous and on Interval/Ratio scale, the other a genuine dichotomy (e.g., true/false)

Biserial Correlation
Both variables continuous and on Interval/Ratio scale, but one is reduced to two categories (i.e., dichotomized)

Effecting Factors

Most correlations assume a linear relationship; if another type of relationship exists, traditional correlations may underestimate the correlation

If there is a restriction of range in either variable, the magnitude of the correlation will be reduced

Deviations from Linearity

Homoscedasticity indicates normally distributed variables, heteroscedasticity indicates skewness on one or both

\qquad
\qquad
\qquad
\qquad

Deviations from Linearity

The relationship between variables can also not be the same throughout their distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation of Correlations

\qquad
\qquad
\qquad
0.30-0.70 Moderate
> 0.70 Strong

These, however, are not universally accepted \qquad and you might see other guidelines

Statistical Significance

Statistical significance is determined both by the size of the correlation coefficient and the size of the sample

Usually expressed as a p value, which tells the probability that the found results are due to chance

General Guidelines:

< 0.30 Weak
\qquad
\qquad
\qquad

Statistical Significance
Statistical significance is determined both by
the size of the correlation coefficient and the
size of the sample
Usually expressed as a p value, which tells the
probability that the found results are due to
chance

\qquad

Quantitative Interpretation

Coefficient of Determination (r^{2})

\qquad
The proportion of variance on one variable that is determined or predictable from the other variable

Coefficient of Nondetermination (1- r^{2})
The proportion of variance in one variable that is not determined or predictable from the other variable

Correlation \& Prediction

When variables are strongly correlated, knowledge about performance on one variable provides information that can help predict performance on the other variable

Linear regression is a statistical technique for predicting scores on one variable (criterion or Y) given a score on another (predictor or X)

Predicts criterion scores based on a perfect linear relationship
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Essential Facts

Degree of the relationship is indicated by the r \qquad number, while the direction is indicated by the sign \qquad

Correlation does not equal causality \qquad

High correlations allow for predictive ability \qquad
\qquad
\qquad

\qquad
\qquad

Scores and their Interpretation

\qquad

Raw scores are of limited utility \qquad
\qquad
Norm-referenced are based on a comparison between a test taker's performance and that of other people

Criterion-referenced are when the test taker's performance is compared to a specified level or standard of performance (i.e., criterion)

Score Interpretation
Norm-referenced
Are relative to the performance of other test
takers
Can be applied to both maximum performance
tests and typical response tests
Criterion-referenced
Are compared to an absolute standard
Typically only applied to maximum performance
tests

Score Interpretations

While people often refer to norm-referenced \qquad and criterion-referenced tests, this is not technically accurate

The terms norm-referenced and criterionreferenced actually refer to the interpretation of scores or test performance, not the test itself
\qquad

Norm-Referenced Interpretations

The most important factor when making norm-referenced interpretations involves the relevance of the group of individuals to which \qquad the examinee's performance is compared

Ask yourself, "Are these norms appropriate for this individual?"

Is the standardization sample representative? Is the sample current?
Is the sample of adequate size?

The Normal Distribution

The normal distribution is also referred to as \qquad the Gaussian or bell-shaped curve

Characterizes many variables that occur in nature

It is unimodal and symmetrical
Predictable proportions of scores occur at specific points in the distribution
\qquad
\qquad
\qquad
\qquad
\qquad

Normal Distribution

\qquad

The mean equals the median, so the mean score exceeds 50% of scores

Approximately 34% of the scores fall between the mean and 1 SD above the mean, so a score one SD above the mean exceeds about 84% of the scores (i.e., $50 \%+34 \%$)

Approximately 14\% of the scores fall between the first and second standard distributions, so a score two SDs above the mean exceeds about 98% of the scores (i.e., $50 \%+34 \%+14 \%)$

Standard Scores

Are linear transformations of raw scores to a scale with a predetermined mean and standard deviation

Use standard deviation units to indicate where a \qquad subject's score is located relative to the mean of the distribution

Retain a direct relationship with the raw scores and the distribution retains its original shape

Reflect interval level measurement

Standard Scores Examples

z-scores: mean of 0, SD of 1
T-scores: mean of 50, SD of 10
IQ Scores: mean of 100, SD of 15
CEEB Scores (SAT/GRE): mean of 500, SD of 100

Many writers use the term "standard score" generically

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Z Scores

$\mathbf{Z}=\frac{\mathbf{X}-\overline{\mathrm{X}}}{\mathrm{SD}} \quad$| $\mathrm{X}=$ Raw score |
| :--- |
| $\mathrm{X}=$ Reference group mean |
| $\mathrm{SD}_{\mathrm{x}}=$ Standard deviation of |
| reference group |

To transform z scores into other Standard
Scores:
New standard score $=(z$ score $)($ New SS$)+$ (new
Mean $)$

Normalized Standard Scores

Are standard scores based on underlying distributions that were not originally normal, but were transformed into normal distributions

Often involve nonlinear transformations and may not retain a direct relationship with the original raw scores

Are typically interpreted in a manner similar to other standard scores

Percentile Rank

One of the most popular and easily understood ways to interpret and report test performance

Interpreted as reflecting the percentage of individuals scoring below a given point in a distribution

A percentile rank of 80 indicates that 80% of the individuals in the reference group scored below this score

Percentile Rank
One of the most popular and easily understood ways to interpret and report test performance Interpreted as reflecting the percentage of individuals scoring below a given point in a distribution A percentile rank of 80 indicates that 80% of the individuals in the reference group scored below this score

\qquad

Percentile Rank

While easy to interpret, percentile ranks do \qquad not represent interval level measurement

They are compressed near the middle of the distribution where there are large numbers of scores, and spread out near the tails where there are relatively few scores

When interpreting be sure they are not confused with "percent correct"

Quartile Scores

\qquad

Based on percentile ranks \qquad
\qquad
The lower 25% receive quartile score of 1
$26 \%-50 \%$ a quartile score of 2 \qquad
51\% - 75\% a quartile score of 3
The upper 25% a quartile of 4 \qquad
\qquad
\qquad

Decile Scores

Divides the distribution of percentile ranks \qquad into ten equal parts

The lowest decile score is 1 and corresponds to scores with a percentile ranks between 0 and 10\%

The highest decile score is 10 and corresponds to scores with percentile ranks between 90 and 100\%

Grade Equivalents

Norm-referenced score interpretation that identifies the academic "grade level" achieved by the student

Popular in school settings and appear easy to interpret, but they need to be interpreted with extreme caution
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Limitations of GE

\qquad

Based on assumptions that are not accurate in many situations (e.g., academic skills achieved at a constant rate with no gain or loss during the summer vacation)

There is not a predictable relationship between grade equivalents and percentile \qquad ranks

Limitations of GE

A common misperception is that students should receive instruction at the level suggested by their grade equivalents \qquad
Experts have numerous concerns about the use of grade equivalents and it is best to avoid their use in
\qquad most situations

Age Equivalents share many of the limitations of GE and as a general rule they should also be avoided

Criterion-Referenced Scores

The examinee's performance is not compared to that of other people, but to a specified level of performance

Emphasize what the examinee knows or what they can do, not their standing relative to other test takers

The most important consideration is how clearly the knowledge or skill domain is specified or defined

Criterion-Referenced Types

Percent Correct: the student correctly answered 85% of the questions

Mastery Testing: a "cut score" is established and all scores equal to or above this score are reported as "pass"

Standards Based Interpretations: Not
Proficient, Partially Proficient, Proficient, \& Advanced Performance; Letter Grades = A, B, C, D, \& F

Characteristics of Norm-Referenced and Criterion-Referenced Scores	
Norm-Referenced Interpretations Criterion-Referenced Interpretations Compare performance to a specific reference group - arelative interpretation. Compare performance to a specific level of pefformance- an absolute interpreation. Useful interpreations require ardevant reference group. Useful interpretations require a carefully defined knowledge or skills doman. Usually assess afairly broad range of knowledge or skills. Usually assess alimited or narrow domain of knowledge or skills. Typically only has alimited number of items to measure each objective or skill Typically will have several items to measure each test objective or skill Items are selected that are of medium difficulty and maximize variance, very difficult and very easy items are usually deleted Items are selected that provide good cover age of content domain; the difficulty of the items matches the difficulty of content domain Example: Percentile rank - apercentile rank of 80 indicates that the examinee scored beter than 80% of the subjects in the reference group. Example: Percentage correct -a percentage correct score of 80 indicates that the examinee successfully answered 80% of the test items.	

Which One?

It is possible for a test to produce both normreferenced and criterion-referenced interpretations (e.g., WIAT-II)

While the development of a test producing both norm-referenced and criterionreferenced interpretations may require some compromises, the increased interpretative versatility may justify the compromises
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inter-Test Comparisons

Test scores cannot be meaningfully compared if
The tests/test versions are different
The reference groups are different
The score scales differ
unless the tests/groups/scales have been purposefully equated

Still, the context and background of test takers must be taken into account when comparing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Table 2.4: Grouped Frequency Distribution

 | Class Interval | Frequency |
 | :--- | :--- |
 | $125-129$ | 6 |
 | $120-124$ | 14 |
 | $115-119$ | 17 |
 | $110-114$ | 23 |
 | $105-109$ | 27 |
 | $100-104$ | 42 |
 | $95-99$ | 39 |
 | $90-94$ | 25 |
 | $85-89$ | 22 |
 | $80-84$ | 17 |
 | $75-79$ | 13 |
 | $70-74$ | 5 |

 Grouped FDs give information on all score ranges in a set of data

 Note: This presents a grouped frequency distribution of 250 hypothetical scores that are grouped into class intervals that incorporate 5 score values

